Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Virol ; 97(12): e0100823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37962378

RESUMO

IMPORTANCE: The human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are etiologic agents of numerous B cell lymphomas. A hallmark of gammaherpesvirus infection is their ability to establish lifelong latency in B cells. However, the specific mechanisms that mediate chronic infection in B cells in vivo remain elusive. Cellular E3 ubiquitin ligases regulate numerous biological processes by catalyzing ubiquitylation and modifying protein location, function, or half-life. Many viruses hijack host ubiquitin ligases to evade antiviral host defense and promote viral fitness. Here, we used the murine gammaherpesvirus 68 in vivo system to demonstrate that the E3 ligase Cul4b is essential for this virus to establish latency in germinal center B cells. These findings highlight an essential role for this E3 ligase in promoting chronic gammaherpesvirus infection in vivo and suggest that targeted inhibition of E3 ligases may provide a novel and effective intervention strategy against gammaherpesvirus-associated diseases.


Assuntos
Linfócitos B , Gammaherpesvirinae , Infecções por Herpesviridae , Infecção Persistente , Animais , Camundongos , Linfócitos B/enzimologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Proteínas Culina/metabolismo , Gammaherpesvirinae/fisiologia , Centro Germinativo/citologia , Centro Germinativo/virologia , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/virologia , Infecção Persistente/enzimologia , Infecção Persistente/virologia , Ubiquitinas/metabolismo , Latência Viral
2.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32404524

RESUMO

Short interspersed nuclear elements (SINEs) are RNA polymerase III (RNAPIII)-transcribed, retrotransposable noncoding RNA (ncRNA) elements ubiquitously spread throughout mammalian genomes. While normally silenced in healthy somatic tissue, SINEs can be induced during infection with DNA viruses, including the model murine gammaherpesvirus 68 (MHV68). Here, we explored the mechanisms underlying MHV68 activation of SINE ncRNAs. We demonstrate that lytic MHV68 infection of B cells, macrophages, and fibroblasts leads to robust activation of the B2 family of SINEs in a cell-autonomous manner. B2 ncRNA induction requires neither host innate immune signaling factors nor involvement of the RNAPIII master regulator Maf1. However, we identified MHV68 ORF36, the conserved herpesviral kinase, as playing a key role in B2 induction during lytic infection. SINE activation is linked to ORF36 kinase activity and can also be induced by inhibition of histone deacetylases 1 and 2 (HCAC 1/2), which is one of the known ORF36 functions. Collectively, our data suggest that ORF36-mediated changes in chromatin modification contribute to B2 activation during MHV68 infection and that this activity is conserved in other herpesviral protein kinase homologs.IMPORTANCE Viral infection dramatically changes the levels of many types of RNA in a cell. In particular, certain oncogenic viruses activate expression of repetitive genes called retrotransposons, which are normally silenced due to their ability to copy and spread throughout the genome. Here, we established that infection with the gammaherpesvirus MHV68 leads to a dramatic induction of a class of noncoding retrotransposons called B2 SINEs in multiple cell types. We then explored how MHV68 activates B2 SINEs, revealing a role for the conserved herpesviral protein kinase ORF36. Both ORF36 kinase-dependent and kinase-independent functions contribute to B2 induction, perhaps through ORF36 targeting of proteins involved in controlling the accessibility of chromatin surrounding SINE loci. Understanding the features underlying induction of these elements following MHV68 infection should provide insight into core elements of SINE regulation, as well as disregulation of SINE elements associated with disease.


Assuntos
Infecções por Herpesviridae/enzimologia , Proteínas Quinases/metabolismo , Retroelementos , Rhadinovirus/enzimologia , Proteínas Virais/metabolismo , Animais , Linfócitos B/enzimologia , Linfócitos B/patologia , Linfócitos B/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Macrófagos/enzimologia , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Células NIH 3T3 , Proteínas Quinases/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Rhadinovirus/genética , Proteínas Virais/genética
3.
Viruses ; 11(5)2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058862

RESUMO

Cytomegalovirus (CMV) infections are still a global health problem, because the latent viruses persist in humans and cause recurring disease. Currently, there are no therapies for CMV latent infections and the therapies for active infections are limited by side effects and other problems. It is impossible to eradicate latent viruses in animals. HCMV (human CMV) is specific to human diseases; however, it is difficult to study HCMV due to its host specificity and long life cycle. Fortunately, MCMV (murine CMV) provides an excellent animal model. Here, three specific pairs of transcription activator-like effector nuclease (TALEN) plasmids (MCMV1-2, 3-4, and 5-6) were constructed to target the MCMV M80/80.5 sequence in order to test their efficacy in blocking MCMV lytic replication in NIH3T3 cell culture. The preliminary data showed that TALEN plasmids demonstrate specific targeting and cleavage in the MCMV M80/80.5 sequence and effectively inhibit MCMV growth in cell culture when the plasmid transfection is prior to the viral infection. The most specific pairs of TALEN plasmids (MCMV3-4) were further used to confirm the negative regulation of latent MCMV replication and gene expression in Balb/c mice. The injection of specific TALEN plasmids caused significant inhibition in the copy number level of immediately early gene (ie-1) DNA in five organs of mice, when compared with the controls. The result demonstrated that TALENs potentially provide an effective strategy to remove latent MCMV in animals.


Assuntos
Infecções por Citomegalovirus/enzimologia , Citomegalovirus/fisiologia , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/virologia , Muromegalovirus/fisiologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Latência Viral , Animais , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Modelos Animais de Doenças , Infecções por Herpesviridae/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/genética , Muromegalovirus/crescimento & desenvolvimento , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
4.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728255

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) alkaline exonuclease SOX, encoded by open reading frame 37 (ORF37), is a bifunctional early-lytic-phase protein that possesses alkaline 5'-to-3' DNase activity and promotes host shutoff at the mRNA level during productive lytic infection. While the SOX protein is well characterized for drastically impairing cellular gene expression, little is known about the impact of its DNase activity on the KSHV genome and life cycle and the biology of KSHV infections. Here, we introduced a previously described DNase-inactivating Glu129His (Q129H) mutation into the ORF37 gene of the viral genome to generate ORF37-Q129H recombinant virus (the Q129H mutant) and investigated the effects of loss or inactivation of DNase activity on viral genome replication, cleavage, and packaging. For the first time, we provide experimental evidence that the DNase activity of the SOX protein does not affect viral latent/lytic DNA synthesis but is required for cleavage and processing of the KSHV genome during lytic replication. Interestingly, the Q129H mutation severely impaired intranuclear processing of progeny virions compared to the wild-type ORF37, as assessed by pulsed-field and Gardella gel electrophoresis, electron microscopy, and single-molecule analysis of replicating DNA (SMARD) assays. Complementation with ORF37-wt (wild type) or BGLF5 (the KSHV protein homolog in Epstein-Barr virus) in 293L/Q129H cells restored the viral genome encapsidation defects. Together, these results indicated that ORF37's proposed DNase activity is essential for viral genome processing and encapsidation and, hence, can be targeted for designing antiviral agents to block KSHV virion production.IMPORTANCE Kaposi's sarcoma (KS)-associated herpesvirus is the causative agent of multiple malignancies, predominantly in immunocompromised individuals, including HIV/AIDS patients. Reduced incidence of KS in HIV/AIDS patients receiving antiherpetic drugs to block lytic replication confirms the role of lytic DNA replication and gene products in KSHV-mediated tumorigenesis. Herpesvirus lytic replication results in the production of complex concatemeric DNA, which is cleaved into unit length viral DNA for packaging into the infectious virions. The conserved herpesviral alkaline exonucleases play an important role in viral genome cleavage and packaging. Here, by using the previously described Q129H mutant virus that selectively lacks DNase activity but retains host shutoff activity, we provide experimental evidence confirming that the DNase function of the KSHV SOX protein is essential for viral genome processing and packaging and capsid maturation into the cytoplasm during lytic replication in infected cells. This led to the identification of ORF37's DNase activity as a potential target for antiviral therapeutics.


Assuntos
Exodesoxirribonucleases/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Genoma Viral/fisiologia , Infecções por Herpesviridae/enzimologia , Herpesvirus Humano 8/fisiologia , Ativação Transcricional/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Exodesoxirribonucleases/genética , Células HEK293 , Infecções por Herpesviridae/genética , Humanos , Mutação de Sentido Incorreto , Proteínas Virais/genética
5.
Virology ; 501: 119-126, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27912080

RESUMO

Expression of Kaposi's sarcoma herpesvirus vFLIP, a potent activator of NFkB signaling, promotes latency. Inhibition of NFkB signaling promotes lytic reactivation. We previously reported that lytic inducer, RTA, inhibits vFLIP induced NFkB signaling by inducing the degradation of vFLIP via the proteasome. Here we report that the cellular ubiquitin ligase, Itch, is required for RTA induced degradation of vFLIP. Expression of either Itch targeting shRNA or a dominant negative mutant of the ubiquitin ligase both increased the stability of vFLIP in the presence of RTA. Itch potently ubiquitinated vFLIP in vivo and in vitro. We provide evidence for interaction between RTA, vFLIP and Itch and we identified an RTA resistant mutant of vFLIP that is unable to interact with Itch. These observations contribute to our understanding of how RTA counteracts the activities of vFLIP.


Assuntos
Infecções por Herpesviridae/enzimologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Ligação Proteica , Proteólise , Proteínas Repressoras/genética , Transativadores/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Virais/genética
6.
Cell Rep ; 16(2): 405-418, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27346349

RESUMO

Activation of nuclear factor of activated T cells (NFAT) is crucial for immune responses. IKKε is an IκB kinase (IKK)-related kinase, and the function of IKKε remains obscure in T cells, despite its abundant expression. We report that IKKε inhibits NFAT activation and T cell responses by promoting NFATc1 phosphorylation. During T cell activation, IKKε was transiently activated to phosphorylate NFATc1. Loss of IKKε elevated T cell antitumor and antiviral immunity and, therefore, reduced tumor development and persistent viral infection. IKKε was activated in CD8(+) T cells of mice bearing melanoma or persistently infected with a model herpesvirus. These results collectively show that IKKε promotes NFATc1 phosphorylation and inhibits T cell responses, identifying IKKε as a crucial negative regulator of T cell activation and a potential target for immunotherapy.


Assuntos
Quinase I-kappa B/fisiologia , Imunidade Celular , Fatores de Transcrição NFATC/metabolismo , Linfócitos T/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/enzimologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Cricetinae , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/imunologia , Ativação Linfocitária , Melanoma Experimental/enzimologia , Melanoma Experimental/imunologia , Mesocricetus , Camundongos Knockout , Transplante de Neoplasias , Fosforilação , Processamento de Proteína Pós-Traducional , Linfócitos T/imunologia , Latência Viral
7.
PLoS Pathog ; 11(12): e1005305, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646420

RESUMO

Many viruses express factors that reduce host gene expression through widespread degradation of cellular mRNA. An example of this class of proteins is the mRNA-targeting endoribonuclease SOX from the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV). Previous studies indicated that cleavage of messenger RNAs (mRNA) by SOX occurs at specific locations defined by the sequence of the target RNA, which is at odds with the down-regulation of a large portion of cellular transcripts. In this study, we address this paradox by using high-throughput sequencing of cleavage intermediates combined with a custom bioinformatics-based analysis pipeline to identify SOX cleavage sites across the mRNA transcriptome. These data, coupled with targeted mutagenesis, reveal that while cleavage sites are specific and reproducible, they are defined by a degenerate sequence motif containing a small number of conserved residues rather than a strong consensus sequence. This degenerate element is well represented in both human and KSHV mRNA, and its presence correlates with RNA destabilization by SOX. This represents a new endonuclease targeting strategy, in which use of a degenerate targeting element enables RNA cleavage at specific locations without restricting the range of targets. Furthermore, it shows that strong target selectivity can be achieved without a high degree of sequence specificity.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Infecções por Herpesviridae/enzimologia , Herpesvirus Humano 8/enzimologia , Ribonucleases/metabolismo , Proteínas Virais/metabolismo , Sequência de Bases , Western Blotting , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , RNA Mensageiro , Transcriptoma
8.
J Virol ; 89(15): 7979-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018151

RESUMO

UNLABELLED: The interleukin-6 homologue (viral interleukin-6 [vIL-6]) of human herpesvirus 8 is implicated in viral pathogenesis due to its proproliferative, inflammatory, and angiogenic properties, effected through gp130 receptor signaling. In primary effusion lymphoma (PEL) cells, vIL-6 is expressed latently and is essential for normal cell growth and viability. This is mediated partly via suppression of proapoptotic cathepsin D (CatD) via cocomplexing of the endoplasmic reticulum (ER)-localized CatD precursor, pro-CatD (pCatD), and vIL-6 with the previously uncharacterized ER membrane protein vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2). vIL-6 suppression of CatD occurs also during reactivated productive replication in PEL cells and is likely to contribute to proreplication functions of vIL-6. Here, we report that vIL-6 suppresses CatD through vIL-6, VKORC1v2, and pCatD association with components of the ER-associated degradation (ERAD) machinery. In transfected cells, expression of vIL-6 along with CatD led to proteasome-dependent (inhibitor-sensitive) decreases in CatD levels and the promotion of pCatD polyubiquitination. Depletion of particular ERAD-associated isomerases, lectins, and translocon components, including ERAD E3 ubiquitin ligase HRD1, diminished suppression of CatD by vIL-6. Coprecipitation assays identified direct or indirect interactions of VKORC1v2, vIL-6, and pCatD with translocon proteins (SEL1L and/or HRD1) and ERAD-associated lectins OS9 and XTP3-B. Endogenous CatD expression in PEL cells was increased by depletion of ERAD components, and suppression of CatD by vIL-6 overexpression in PEL cells was dependent on HRD1. Our data reveal a new mechanism of ER-localized vIL-6 activity and further characterize VKORC1v2 function. IMPORTANCE: Human herpesvirus 8 (HHV-8) viral interleukin-6 (vIL-6), unlike cellular IL-6 proteins, is secreted inefficiently and sequestered mainly in the endoplasmic reticulum (ER), from where it can signal through the gp130 receptor. We have recently reported that vIL-6 also associates with a novel membrane protein termed vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2) and mediates suppression of VKORC1v2-cointeracting cathepsin D, a stress-released proapoptotic protein negatively impacting HHV-8 latently infected primary effusion lymphoma (PEL) cell viability and reactivated virus productive replication. Here, we have examined the mechanistic basis of the VKORC1v2-vIL-6 interaction-dependent suppression of cathepsin D and have found that this novel activity of vIL-6 is mediated through coassociation of VKORC1v2, procathepsin D, and vIL-6 with components of the ER-associated degradation (ERAD) machinery. Our findings provide information of significance for potential antiviral and therapeutic targeting of VKORC1v2-mediated vIL-6 activities and also indicate the nature of VKORC1v2 function in normal cell biology.


Assuntos
Catepsina D/metabolismo , Degradação Associada com o Retículo Endoplasmático , Precursores Enzimáticos/metabolismo , Infecções por Herpesviridae/enzimologia , Herpesvirus Humano 8/metabolismo , Interleucina-6/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Catepsina D/química , Catepsina D/genética , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Humanos , Interleucina-6/química , Interleucina-6/genética , Ligação Proteica , Proteínas Virais/química , Proteínas Virais/genética
9.
J Neurovirol ; 21(5): 518-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26025330

RESUMO

Bovine herpesvirus type 5 (BoHV-5) is the causative agent of herpetic meningoencephalitis in cattle. The purinergic system is described as a modulator of the immune response and neuroinflammation. These functions are related to the extracellular nucleotides concentration. NTPDase and 5'-nucleotidase are enzymes responsible for controlling the extracellular concentration of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine (ADO). The aim of this study is to determinate the ectonucleotidase activity in cortical synaptosomes and synaptosomes from the hippocampus of rabbits experimentally infected with BoHV-5. Rabbits were divided into four groups, two control groups (non-inoculated animals), and two infected groups (inoculated with BoHV-5). The infected groups received 0.5 ml of BoHV-5 suspension with 10(7.5)TCID50 of viral strain SV-507/99, per paranasal sinuses, and the control groups received 0.5 ml of minimum essential media per paranasal sinuses. Animals were submitted to euthanasia on days 7 and 12 post-inoculation (p.i.); cerebral cortex and hippocampus were collected for the synaptosomes isolation and posterior determination of the ectonucleotidase activities. The results showed a decrease (P < 0.05) in ectonucleotidase activity in synaptosomes from the cerebral cortex of infected rabbits, whereas an increased (P < 0.05) ectonucleotidase activity was observed in synaptosomes from the hippocampus. These differences may be related with the heterogeneous distribution of ectonucleotidases in the different brain regions and also with the viral infectivity. Therefore, it is possible to speculate that BoHV-5 replication results in changes in ectonucleotidase activity in the brain, which may contribute to the neurological signs commonly observed in this disease.


Assuntos
Encefalite Viral/enzimologia , Infecções por Herpesviridae/enzimologia , Meningoencefalite/enzimologia , Nucleotidases/metabolismo , Sinaptossomos/enzimologia , Animais , Córtex Cerebral/enzimologia , Córtex Cerebral/virologia , Herpesvirus Bovino 5 , Hipocampo/enzimologia , Hipocampo/virologia , Coelhos
10.
J Virol ; 88(12): 7024-35, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24719417

RESUMO

UNLABELLED: Robust activation of human immunodeficiency virus type 1 (HIV-1) gene expression occurs upon superinfection with Kaposi's sarcoma-associated herpesvirus (KSHV), a common AIDS-associated pathogen. Though the mechanisms underlying this phenotype remain unknown, several KSHV-encoded factors have been reported to stimulate HIV-1 long terminal repeat (LTR) activity. Here, we systematically evaluated the ability of KSHV tegument proteins to modulate the activation of an integrated HIV-1 LTR and revealed that the most potent individual activator is ORF45. ORF45 directs an increase in RNA polymerase II recruitment to the HIV-1 LTR, leading to enhanced transcriptional output. ORF45 is a robust activator of the p90 ribosomal S6 kinases (RSK), and we found that this activity is necessary but not sufficient to increase transcription from the LTR. Of the three widely expressed RSK isoforms, RSK2 appears to be selectively involved in LTR stimulation by both KSHV ORF45 and HIV-1 Tat. However, constitutively active RSK2 is unable to stimulate the LTR, suggesting that ORF45 may preferentially direct this kinase to a specific set of targets. Collectively, our findings reveal a novel transcriptional activation function for KSHV ORF45 and highlight the importance of RSK2 in shaping the transcriptional environment during infection. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a prominent AIDS-associated pathogen. Previous studies have shown that infection of cells containing human immunodeficiency virus type 1 (HIV-1) with KSHV leads to potent stimulation of HIV-1 gene expression by activating the HIV-1 promoter, termed the long terminal repeat (LTR). Here, we compared the abilities of various KSHV proteins to activate gene expression from the HIV-1 LTR and found that KSHV ORF45 is the most potent activator. ORF45 is known to induce cell signaling through ribosomal S6 kinase (RSK) and enhance protein translation. However, we revealed that the activation of a specific isoform of RSK by ORF45 also leads to increased mRNA synthesis from the LTR by the host RNA polymerase. Collectively, our findings provide new insight into the interviral interactions between KSHV and HIV that may ultimately impact disease.


Assuntos
Coinfecção/enzimologia , Infecções por HIV/enzimologia , Repetição Terminal Longa de HIV , HIV-1/genética , Infecções por Herpesviridae/enzimologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Coinfecção/genética , Coinfecção/virologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8 , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
11.
J Virol ; 88(12): 6832-46, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696485

RESUMO

UNLABELLED: Upon viral infection, type I interferons, such as alpha and beta interferon (IFN-α and IFN-ß, respectively), are rapidly induced and activate multiple antiviral genes, thereby serving as the first line of host defense. Many DNA and RNA viruses counteract the host interferon system by modulating the production of IFNs. In this study, we report that murine gammaherpesvirus 68 (MHV-68), a double-stranded DNA virus, encodes open reading frame 11 (ORF11), a novel immune modulator, to block IFN-ß production. ORF11-deficient recombinant viruses induced more IFN-ß production in fibroblast and macrophage cells than the MHV-68 wild type or a marker rescue virus. MHV-68 ORF11 decreased IFN-ß promoter activation by various factors, the signaling of which converges on TBK1-IRF3 activation. MHV-68 ORF11 directly interacted with both overexpressed and endogenous TBK1 but not with IRF3. Physical interactions between ORF11 and endogenous TBK1 were further confirmed during virus replication in fibroblasts using a recombinant virus expressing FLAG-ORF11. ORF11 efficiently reduced interaction between TBK1 and IRF3 and subsequently inhibited activation of IRF3, thereby negatively regulating IFN-ß production. Our domain-mapping study showed that the central domain of ORF11 was responsible for both TBK1 binding and inhibition of IFN-ß induction, while the kinase domain of TBK1 was sufficient for ORF11 binding. Taken together, these results suggest a mechanism underlying inhibition of IFN-ß production by a gammaherpesvirus and highlight the importance of TBK1 in DNA virus replication. IMPORTANCE: Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors. Upon virus infection, the type I interferon pathway is activated by a series of signaling molecules and stimulates antiviral gene expression. To subvert such interferon antiviral responses, viruses are equipped with multiple factors that can inhibit its critical steps. In this study, we took an unbiased genomic approach using a mutant library of murine gammaherpesvirus 68 to screen a novel viral immune modulator that negatively regulates the type I interferon pathway and identified ORF11 as a strong candidate. ORF11-deficient virus infection produced more interferon than the wild type in both fibroblasts and macrophages. During virus replication, ORF11 directly bound to TBK1, a key regulatory protein in the interferon pathway, and inhibited TBK1-mediated interferon production. Our results highlight a crucial role of TBK1 in controlling DNA virus infection and a viral strategy to curtail host surveillance.


Assuntos
Regulação para Baixo , Infecções por Herpesviridae/imunologia , Interferon beta/genética , Proteínas Serina-Treonina Quinases/metabolismo , Rhadinovirus/metabolismo , Proteínas Virais/metabolismo , Animais , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Humanos , Interferon beta/imunologia , Camundongos , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Rhadinovirus/genética , Proteínas Virais/genética
12.
Virus Res ; 185: 72-6, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24657787

RESUMO

Bovine herpesvirus 1 (BoHV-1), a significant viral pathogen of cattle, causes inflammation in affected tissue during acute infection. Consequently, we tested whether productively infected bovine cells stimulate inflammasome formation. Expression of two components required for inflammasome formation, the DNA sensor IFI16 (gamma-interferon-inducible protein 16) and NLRP3 (NOD-like receptor family, pyrin domain containing 3), were induced in bovine kidney cells by eight hours after infection. IFI16 was detected in punctate granules localized to the cytoplasm and nucleus. During productive infection, more than ten times more cells were caspase 1 positive, which is activated following inflammasome formation. Two caspase 1 inhibitors had no effect on productive infection. Conversely, another caspase 1 inhibitor, glyburide, significantly inhibited virus infection suggesting it had off-target effects on related enzymes or interfered with infection via non-enzymatic mechanisms. Collectively, these studies demonstrated that BoHV-1 infection stimulated inflammasome formation, which we predict is important for clinical symptoms in cattle.


Assuntos
Caspase 1/imunologia , Doenças dos Bovinos/enzimologia , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/fisiologia , Inflamassomos/imunologia , Animais , Caspase 1/genética , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Inflamassomos/genética , Regulação para Cima
13.
Virology ; 449: 25-34, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24418534

RESUMO

The UL4 gene is conserved within the genome of defective interfering particles of equine herpesvirus type 1 (EHV-1) that mediate persistent infection. Here, we show that the UL4 protein inhibits EHV-1 reporter gene expression by decreasing the level of transcribed mRNA. The UL4 protein did not bind any gene class of EHV-1 promoters in electromobility or chromatin immunoprecipitation assays, but directly interacted with the TATA box-binding protein (TBP) and the carboxy-terminal domain of RNA polymerase II both in vitro (GST-pulldown assays) and in infected cells (coimmunoprecipitation analyses). Microarray analyses of the expression of the 78 EHV-1 genes revealed that viral late genes important for virion assembly displayed enhanced expression in cells infected with UL4-null virus as compared to wild-type or UL4-restored EHV-1. Quantitative PCR analyses showed that viral DNA replication was not retarded in cells infected with the UL4-null virus as compared to wild-type EHV-1.


Assuntos
Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Herpesvirus Equídeo 1/genética , Herpesvirus Equídeo 1/metabolismo , RNA Polimerase II/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Ligação Proteica , RNA Polimerase II/genética , Coelhos , Proteína de Ligação a TATA-Box/genética , Proteínas Virais/genética
14.
Virology ; 448: 293-302, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24314660

RESUMO

Ubiquitin C-terminal Hydrolase L1 (UCH-L1) has oncogenic properties and is highly expressed during malignancies. We recently documented that Epstein-Barr virus (EBV) infection induces uch-l1 expression. Here we show that Kaposi's Sarcoma-associated herpesvirus (KSHV) infection induced UCH-L1 expression, via cooperation of KSHV Latency-Associated Nuclear Antigen (LANA) and RBP-Jκ and activation of the uch-l1 promoter. UCH-L1 expression was also increased in Primary Effusion Lymphoma (PEL) cells co-infected with KSHV and EBV compared with PEL cells infected only with KSHV, suggesting EBV augments the effect of LANA on uch-l1. EBV latent membrane protein 1 (LMP1) is one of the few EBV products expressed in PEL cells. Results showed that LMP1 was sufficient to induce uch-l1 expression, and co-expression of LMP1 and LANA had an additive effect on uch-l1 expression. These results indicate that viral latency products of both human γ-herpesviruses contribute to uch-l1 expression, which may contribute to the progression of lymphoid malignancies.


Assuntos
Antígenos Virais/metabolismo , Transformação Celular Viral , Infecções por Vírus Epstein-Barr/enzimologia , Infecções por Herpesviridae/enzimologia , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina Tiolesterase/genética , Proteínas da Matriz Viral/metabolismo , Antígenos Virais/genética , Linhagem Celular Transformada , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Proteínas Nucleares/genética , Ubiquitina Tiolesterase/metabolismo , Regulação para Cima , Proteínas da Matriz Viral/genética
15.
J Virol ; 88(2): 1281-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24227836

RESUMO

In primary effusion lymphoma (PEL) cells infected with latent Kaposi's sarcoma-associated herpesvirus (KSHV), the promoter of the viral lytic switch gene, Rta, is organized into bivalent chromatin, similar to cellular developmental switch genes. Histone deacetylase (HDAC) inhibitors (HDACis) reactivate latent KSHV and dramatically remodel the viral genome topology and chromatin architecture. However, reactivation is not uniform across a population of infected cells. We sought to identify an HDACi cocktail that would uniformly reactivate KSHV and reveal the regulatory HDACs. Using HDACis with various specificities, we found that class I HDACis were sufficient to reactivate the virus but differed in potency. Valproic acid (VPA) was the most effective HDACi, inducing lytic cycle gene expression in 75% of cells, while trichostatin A (TSA) induced less widespread lytic gene expression and inhibited VPA-stimulated reactivation. VPA was only slightly superior to TSA in inducing histone acetylation of Rta's promoter, but only VPA induced significant production of infectious virus, suggesting that HDAC regulation after Rta expression has a dramatic effect on reactivation progression. Ectopic HDACs 1, 3, and 6 inhibited TPA-stimulated KSHV reactivation. Surprisingly, ectopic HDACs 1 and 6 stimulated reactivation independently, suggesting that the stoichiometries of HDAC complexes are critical for the switch. Tubacin, a specific inhibitor of the ubiquitin-binding, proautophagic HDAC6, also inhibited VPA-stimulated reactivation. Immunofluorescence indicated that HDAC6 is expressed diffusely throughout latently infected cells, but its expression level and nuclear localization is increased during reactivation. Overall, our data suggest that inhibition of HDAC classes I and IIa and maintenance of HDAC6 (IIb) activity are required for optimal KSHV reactivation.


Assuntos
Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Histona Desacetilases/metabolismo , Ativação Viral , Linhagem Celular , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por Herpesviridae/genética , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Regiões Promotoras Genéticas , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
17.
PLoS Pathog ; 9(8): e1003506, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990779

RESUMO

The small ubiquitin-like modifier (SUMO) is a protein that regulates a wide variety of cellular processes by covalent attachment of SUMO moieties to a diverse array of target proteins. Sumoylation also plays an important role in the replication of many viruses. Previously, we showed that Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO-ligase, K-bZIP, which catalyzes sumoylation of host and viral proteins. We report here that this virus also encodes a gene that functions as a SUMO-targeting ubiquitin-ligase (STUbL) which preferentially targets sumoylated proteins for degradation. K-Rta, the major transcriptional factor which turns on the entire lytic cycle, was recently found to have ubiquitin ligase activity toward a selected set of substrates. We show in this study that K-Rta contains multiple SIMs (SUMO interacting motif) and binds SUMOs with higher affinity toward SUMO-multimers. Like RNF4, the prototypic cellular STUbL, K-Rta degrades SUMO-2/3 and SUMO-2/3 modified proteins, including promyelocytic leukemia (PML) and K-bZIP. PML-NBs (nuclear bodies) or ND-10 are storage warehouses for sumoylated proteins, which negatively regulate herpesvirus infection, as part of the intrinsic immune response. Herpesviruses have evolved different ways to degrade or disperse PML bodies, and KSHV utilizes K-Rta to inhibit PML-NBs formation. This process depends on K-Rta's ability to bind SUMO, as a K-Rta SIM mutant does not effectively degrade PML. Mutations in the K-Rta Ring finger-like domain or SIM significantly inhibited K-Rta transactivation activity in reporter assays and in the course of viral reactivation. Finally, KSHV with a mutation in the Ring finger-like domain or SIM of K-Rta replicates poorly in culture, indicating that reducing SUMO-conjugates in host cells is important for viral replication. To our knowledge, this is the first virus which encodes both a SUMO ligase and a SUMO-targeting ubiquitin ligase that together may generate unique gene regulatory programs.


Assuntos
Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Replicação Viral/fisiologia , Motivos de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células HEK293 , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/genética , Humanos , Proteínas Imediatamente Precoces/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica , Estrutura Terciária de Proteína , Proteólise , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Expert Opin Ther Targets ; 17(10): 1119-32, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23930666

RESUMO

INTRODUCTION: The Herpesviridae are responsible for debilitating acute and chronic infections, and some members of this family are associated with human cancers. Conventional anti-herpesviral therapy targets the viral DNA polymerase and has been extremely successful; however, the emergence of drug-resistant virus strains, especially in neonates and immunocompromised patients, underscores the need for continued development of anti-herpes drugs. In this article, we explore an alternative target for antiviral therapy, the HSV helicase/primase complex. AREAS COVERED: This review addresses the current state of knowledge of HSV DNA replication and the important roles played by the herpesvirus helicase- primase complex. In the last 10 years several helicase/primase inhibitors (HPIs) have been described, and in this article, we discuss and contrast these new agents with established inhibitors. EXPERT OPINION: The outstanding safety profile of existing nucleoside analogues for α-herpesvirus infection make the development of new therapeutic agents a challenge. Currently used nucleoside analogues exhibit few side effects and have low occurrence of clinically relevant resistance. For HCMV, however, existing drugs have significant toxicity issues and the frequency of drug resistance is high, and no antiviral therapies are available for EBV and KSHV. The development of new anti-herpesvirus drugs is thus well worth pursuing especially for immunocompromised patients and those who develop drug-resistant infections. Although the HPIs are promising, limitations to their development into a successful drug strategy remain.


Assuntos
Antivirais/uso terapêutico , DNA Helicases/antagonistas & inibidores , DNA Primase/antagonistas & inibidores , Infecções por Herpesviridae/tratamento farmacológico , Proteínas Virais/antagonistas & inibidores , Animais , Replicação do DNA , DNA Viral , Herpesviridae/fisiologia , Infecções por Herpesviridae/enzimologia , Humanos , Replicação Viral
19.
Bull Exp Biol Med ; 154(4): 505-7, 2013 Feb.
Artigo em Inglês, Russo | MEDLINE | ID: mdl-23486592

RESUMO

Enzymatic activity of the peripheral blood erythrocytes was studied in pregnant women after exacerbation of herpesvirus infection during the third trimester. Herpetic infection suppressed ATP synthesis and reduced the activities of glutathione reductase and glutathione peroxidase in erythrocytes. These shifts were paralleled by lesser intensity of SOD reaction, normally suppressing LPO processes in erythrocyte membranes.


Assuntos
Eritrócitos/enzimologia , Eritrócitos/virologia , Infecções por Herpesviridae/enzimologia , Infecções por Herpesviridae/fisiopatologia , Adolescente , Feminino , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Humanos , Gravidez , Terceiro Trimestre da Gravidez , Superóxido Dismutase/metabolismo , Adulto Jovem
20.
J Virol ; 86(23): 12826-37, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22993144

RESUMO

Gammaherpesviruses, such as Epstein-Barr virus (EBV), are ubiquitous cancer-associated pathogens that interact with DNA damage response, a tumor suppressor network. Chronic gammaherpesvirus infection and pathogenesis in a DNA damage response-insufficient host are poorly understood. Ataxia-telangiectasia (A-T) is associated with insufficiency of ataxia-telangiectasia mutated (ATM), a critical DNA damage response kinase. A-T patients display a pattern of anti-EBV antibodies suggestive of poorly controlled EBV replication; however, parameters of chronic EBV infection and pathogenesis in the A-T population remain unclear. Here we demonstrate that chronic gammaherpesvirus infection is poorly controlled in an animal model of A-T. Intriguingly, in spite of a global increase in T cell activation and numbers in wild-type (wt) and ATM-deficient mice in response to mouse gammaherpesvirus 68 (MHV68) infection, the generation of an MHV68-specific immune response was altered in the absence of ATM. Our finding that ATM expression is necessary for an optimal adaptive immune response against gammaherpesvirus unveils an important connection between DNA damage response and immune control of chronic gammaherpesvirus infection, a connection that is likely to impact viral pathogenesis in an ATM-insufficient host.


Assuntos
Ataxia Telangiectasia/imunologia , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Gammaherpesvirinae , Infecções por Herpesviridae/imunologia , Ativação Linfocitária/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/deficiência , Linhagem Celular , Proteínas de Ligação a DNA/deficiência , Citometria de Fluxo , Infecções por Herpesviridae/enzimologia , Camundongos , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/deficiência , Linfócitos T/imunologia , Proteínas Supressoras de Tumor/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...